Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Neuroinflammation ; 21(1): 108, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664840

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS: CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS: Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.


Microglia , Rats, Inbred F344 , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , alpha-Synuclein , Animals , Microglia/metabolism , Microglia/drug effects , alpha-Synuclein/metabolism , Rats , Male , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Pyrroles/pharmacology , Aminopyridines/pharmacology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Substantia Nigra/metabolism , Substantia Nigra/pathology , Substantia Nigra/drug effects , Disease Models, Animal
2.
Eur J Neurosci ; 59(7): 1585-1603, 2024 Apr.
Article En | MEDLINE | ID: mdl-38356120

Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods. In the present study, adult male Fischer 344 rats received unilateral, intrastriatal injections of either α-syn PFFs or phosphate-buffered saline (PBS). At 4 or 8 months post-injection (p.i.), animals underwent in vivo microdialysis to evaluate basal extracellular striatal DA and metabolite levels, local KCl-evoked striatal DA release and the effects of systemic levodopa (l-DOPA). Post-mortem analysis demonstrated equivalent PFF-induced reductions in tyrosine hydroxylase (TH) immunoreactive nigral neurons (~50%) and striatal TH (~20%) at both time points. Compared with reduction in striatal TH, reduction in striatal dopamine transporter (DAT) was more pronounced and progressed between the 4- and 8-month p.i. intervals (36% âž” 46%). Significant PFF-induced deficits in basal and evoked striatal DA, as well as deficits in motor performance, were not observed until 8 months p.i. Responses to l-DOPA did not differ regardless of PBS or PFF treatment. These results suggest that basal and evoked striatal DA are maintained for several months following PFF injection, with loss of both associated with motor dysfunction. Our studies provide insight into the time course and magnitude of PFF-induced extracellular dopaminergic deficits in the striatum.


Parkinson Disease , alpha-Synuclein , Rats , Male , Animals , alpha-Synuclein/metabolism , Dopamine/metabolism , Levodopa/pharmacology , Microdialysis , Substantia Nigra/metabolism , Parkinson Disease/metabolism
3.
NPJ Parkinsons Dis ; 10(1): 7, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38172128

Examination of early phases of synucleinopathy when inclusions are present, but long before neurodegeneration occurs, is critical to both understanding disease progression and the development of disease modifying therapies. The rat alpha-synuclein (α-syn) preformed fibril (PFF) model induces synchronized synucleinopathy that recapitulates the pathological features of Parkinson's disease (PD) and can be used to study synucleinopathy progression. In this model, phosphorylated α-syn (pSyn) inclusion-containing neurons and reactive microglia (major histocompatibility complex-II immunoreactive) peak in the substantia nigra pars compacta (SNpc) months before appreciable neurodegeneration. However, it remains unclear which specific genes are driving these phenotypic changes. To identify transcriptional changes associated with early synucleinopathy, we used laser capture microdissection of the SNpc paired with RNA sequencing (RNASeq). Precision collection of the SNpc allowed for the assessment of differential transcript expression in the nigral dopamine neurons and proximal glia. Transcripts upregulated in early synucleinopathy were mainly associated with an immune response, whereas transcripts downregulated were associated with neurotransmission and the dopamine pathway. A subset of 29 transcripts associated with neurotransmission/vesicular release and the dopamine pathway were verified in a separate cohort of males and females to confirm reproducibility. Within this subset, fluorescent in situ hybridization (FISH) was used to localize decreases in the Syt1 and Slc6a3 transcripts to pSyn inclusion-containing neurons. Identification of transcriptional changes in early synucleinopathy provides insight into the molecular mechanisms driving neurodegeneration.

4.
Res Sq ; 2023 May 04.
Article En | MEDLINE | ID: mdl-37205534

Background: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously described the time course of microglial major-histocompatibility complex-II (MHC-II) expression and alterations in microglia morphology in the PFF model in rats. Specifically, the peaks of α-syn inclusion formation, MHC-II expression, and reactive morphology in the substantia nigra pars compacta (SNpc) all occur two months post PFF injection, months before neurodegeneration occurs. These results suggest that activated microglia may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether microglial depletion could impact the magnitude of α-syn aggregation, nigrostriatal degeneration, or related microglial activation during the α-syn PFF model. Methods: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600mg/kg), a colony stimulating factor-1 receptor (CSF1R) inhibitor, to deplete microglia for a period of either two or six months. Results: PLX3397B administration resulted in significant depletion (45-53%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. Microglial depletion did not impact accumulation of phosphorylated α-syn (pSyn) within SNpc neurons and did not alter pSyn associated microglial reactivity or expression of MHC-II. Further, microglial depletion did not impact SNpc neuron degeneration. Paradoxically, long term microglial depletion resulted in increased soma size of remaining microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. Conclusions: Collectively, our results suggest that microglial depletion is not a viable disease-modifying strategy for PD and that partial microglial depletion can induce a heightened proinflammatory state in remaining microglia.

5.
NPJ Parkinsons Dis ; 8(1): 61, 2022 May 24.
Article En | MEDLINE | ID: mdl-35610264

ß2-adrenoreceptor (ß2AR) agonists have been associated with a decreased risk of developing Parkinson's disease (PD) and are hypothesized to decrease expression of both alpha-synuclein mRNA (Snca) and protein (α-syn). Effects of ß2AR agonist clenbuterol on the levels of Snca mRNA and α-syn protein were evaluated in vivo (rats and mice) and in rat primary cortical neurons by two independent laboratories. A modest decrease in Snca mRNA in the substantia nigra was observed after a single acute dose of clenbuterol in rats, however, this decrease was not maintained after multiple doses. In contrast, α-syn protein levels remained unchanged in both single and multiple dosing paradigms. Furthermore, clenbuterol did not decrease Snca in cultured rat primary cortical neurons, or decrease Snca or α-syn in mice. Additionally, compared to the single-dose paradigm, repeat dosing resulted in substantially lower levels of clenbuterol in plasma and brain tissue in rodents. Based on our observations of a transient decrease in Snca and no effect on α-syn protein in this preclinical study, these data support the conclusion that clenbuterol is not likely a viable disease-modifying strategy for PD.

6.
Mov Disord ; 37(8): 1739-1748, 2022 08.
Article En | MEDLINE | ID: mdl-35524682

BACKGROUND: Positron emission tomography (PET) imaging in early Parkinson's disease (PD) subjects reveals that increased dopamine (DA) turnover and reduced dopamine transporter (DAT) density precede decreases in DA synthesis and storage. The rat α-synuclein preformed fibril (α-syn PFF) model provides a platform to investigate DA dynamics during multiple stages of α-syn inclusion-triggered nigrostriatal degeneration. OBJECTIVES: We investigated multiple aspects of in vivo dopaminergic deficits longitudinally and similarities to human PD using translational PET imaging readouts. METHODS: Longitudinal imaging was performed every 2 months in PFF and control rats for 7 months. [18 F]-Fluoro-3,4-dihydroxyphenyl-L-alanine (FDOPA) imaging was performed to investigate DA synthesis and storage (Kocc ) and DA turnover, estimated by its inverse, the effective distribution volume ratio (EDVR). 11 C-Methylphenidate (MP) was used to estimate DAT density (BPND ). RESULTS: Early DA turnover increases and DAT binding decreases were observed in the ipsilateral striatum of PFF rats, progressing longitudinally. EDVR decreased 26%, 38%, and 47%, and BPND decreased 36%, 50%, and 65% at the 2-, 4-, and 6-month time points, respectively, compared to ipsilateral control striatum. In contrast, deficits in DA synthesis and storage were not observed in the ipsilateral striatum of PFF rats compared to control injections and were relatively preserved up to 6 months (Kocc decreased 20% at 6 months). CONCLUSIONS: The relative preservation of DA synthesis and storage compared to robust progressive deficits in DAT density and increases in DA turnover in the rat α-syn PFF model display remarkable face validity to dopaminergic alterations in human PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Parkinson Disease , alpha-Synuclein , Animals , Corpus Striatum/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Positron-Emission Tomography , Rats , alpha-Synuclein/metabolism
7.
Parkinsonism Relat Disord ; 89: 41-47, 2021 08.
Article En | MEDLINE | ID: mdl-34218047

BACKGROUND: Alpha-synuclein (α-syn) preformed fibril (PFF)-induced pathology can be used to study the features and progression of synucleinopathies, such as Parkinson's disease. Intrastriatal injection of mouse α-syn PFFs produce accumulation of α-syn pathology in both mice and rats. Previous studies in mice have revealed that greater sequence homology between the α-syn amino acid sequence used to produce PFFs with that of the endogenous host α-syn increases α-syn pathology in vivo. NEW METHODS: Based on the prediction that greater sequence homology will result in more α-syn pathology, PFFs generated from recombinant rat α-syn (rPFFs) were used instead of PFFs produced from recombinant mouse α-syn (mPFFs), which are normally used in the model. Rats received unilateral intrastriatal injections of either rPFFs or mPFFs and accumulation of α-syn phosphorylated at serine 129 (pSyn) was examined at 1-month post-surgery. RESULTS: Rats injected with mPFFs exhibited abundant accumulation of α-syn inclusions in the substantia nigra and cortical regions, whereas in rats injected with rPFFs had significantly fewer SNpc neurons containing pSyn inclusions (≈60% fewer) and little, if any, pSyn inclusions were observed in the cortex. CONCLUSIONS: Our results suggest that additional factors beyond the degree of sequence homology between host α-syn and injected recombinant α-syn impact efficiency of seeding and subsequent inclusion formation. More practically, these findings caution against the use of rPFFs in the rat preformed fibril model.


Synucleinopathies/metabolism , Synucleinopathies/pathology , alpha-Synuclein , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Mice , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rats , Recombinant Proteins , Substantia Nigra/metabolism , Substantia Nigra/pathology
...